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Many researchers have reported failures of the approximate Riemann solvers in the pres-
ence of strong shock. This is believed to be due to perturbation transfer in the transverse
direction of shock waves. We propose a simple and clear method to prevent such problems
for the Harten–Lax–van Leer contact (HLLC) scheme. By defining a sensing function in the
transverse direction of strong shock, the HLLC flux is switched to the Harten–Lax–van Leer
(HLL) flux in that direction locally, and the magnitude of the additional dissipation is auto-
matically determined using the HLL scheme. We combine the HLLC and HLL schemes in a
single framework using a switching function. High-order accuracy is achieved using a
weighted average flux (WAF) scheme, and a method for v-shear treatment is presented.
The modified HLLC scheme is named HLLC–HLL. It is tested against a steady normal shock
instability problem and Quirk’s test problems, and spurious solutions in the strong shock
regions are successfully controlled.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The approximate Riemann solvers are popular shock capturing methods and are widely used in computational studies for
high speed flows. However, many researchers have reported failing cases using these schemes. Quirk reported a number of
cases in which the Riemann solvers can give unphysical results in multidimensional flows [1]. He described the limitations of
the Riemann solvers with respect to shock-capturing properties, and cataloged their failings including expansion shock, neg-
ative internal energy, slowly-moving shock, the carbuncle phenomenon, kinked Mach stem, and odd–even decoupling. So-
called shock instability, which is a numerical instability in multidimensional flow and the nonexistence of a solution for
strong expansion flow, are major problems in such failings.

Researchers have shown that Riemann solvers, which can resolve the contact and shear waves exactly, have such prob-
lems in the vicinity of strong shock waves. Quirk suggested a strategy to use combined fluxes so that a dissipative approach,
such as the Harten–Lax–van Leer-Einfeldt (HLLE) scheme, can be used in the shock region [1]. Liou analyzed several Riemann
solvers by expressing numerical fluxes in terms of mass flux. He defined the dissipative terms in the mass flux of each
scheme, and identified the dissipative terms responsible for shock instability [2]. Liou controlled the magnitude of wave
speed jk2j across the contact discontinuity in the Roe scheme to make the pressure difference term have zero value in the
dissipative terms of the mass flux. For a strong expansion condition, Quirk also used the HLLE scheme to eliminate the
expansion shock appearance in a supersonic corner flow test problem.
. All rights reserved.
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The Godunov method can find a solution to the Riemann problem which may be the exact solution or an approximate
solution. In the Euler equations, the solution of the local Riemann problem consists of two nonlinear waves (shock or rare-
faction waves) and contact discontinuity. Therefore, there are four separate constant states. Harten, Lax, and van Leer pre-
sented a direct approximation of the numerical flux to compute Godunov flux [3]. The resulting Harten–Lax–van Leer (HLL)
Riemann solver is very efficient and robust. It has an entropy satisfaction property, resolves isolated shock exactly, and pre-
serves positivity [3–5]. The main drawback of the HLL scheme is that it cannot resolve contact discontinuity exactly. Toro,
Spruce, and Speares presented a two-state HLL scheme in which the missing contacts and shear waves are restored [4,6]. The
resulting Harten–Lax–van Leer contact (HLLC) scheme preserves the entropy satisfaction property of the HLL scheme [4].
Batten et al. showed that the HLLC scheme is positively conservative [7]. The HLLC scheme is the simplest solver to preserve
shock, contact, and shear waves exactly. Since the HLL and HLLC schemes hold the entropy satisfaction property and posi-
tivity, we focused our interests on shock instability in the vicinity of strong shocks.

Researchers have shown that shock instability is strongly related to the resolution of contact and shear waves. We have
proposed a control method of flux difference across the contact for strong shock and expansion flows [8]. In this paper, we
provide a simple and clear way of adding dissipation to the HLLC scheme to remedy the numerical shock instability problem.
Defining and using a sensing method for the transverse direction of strong shocks, the HLLC scheme is switched to the HLL
scheme and the magnitude of the additional dissipation is automatically determined. Since the HLL scheme can resolve iso-
lated shock exactly, local application of the dissipative HLL scheme has no adverse effect on the overall resolution of flow
fields. High-order accuracy is achieved using the weighted average flux (WAF) scheme [4,9–12], and implementation of
the proposed method using the WAF scheme is presented.

2. HLL and HLLC Riemann solvers with WAF scheme

2.1. HLL and HLLC schemes

The HLL Riemann solver assumes a single constant state between two nonlinear waves (shock or rarefaction) [3,4]. This
assumption averages the spatial variations across the contact discontinuity resulting in a smeared solution of contact and
shear waves [4]. The HLLC scheme is a modification of the HLL scheme wherein the missing contacts and shear waves are
restored [4,6].

The HLL intercell flux is written as [3,4]
FHLL
iþ1=2 ¼

FL; 0 6 SL

F�L ¼ FL þ SL UHLL � UL

� �
; SL 6 0 6 S�

F�R ¼ FR � SR UR � UHLL
� �

; S� 6 0 6 SR

FR; 0 P SR

8>>>>><
>>>>>:

; ð1Þ
where SL is the smallest wave speed and SR is the largest wave speed. The subscripts L and R imply the left and right values at
the cell interface, respectively. The subscripts *L and *R imply the left and right values at the contact discontinuity between
two nonlinear waves, respectively.

The single constant state (star region) vector UHLL is the average of the exact Riemann problem between the slowest and
fastest waves [3,4]:
UHLL ¼ SRUR � SLUL þ FL � FR

SR � SL
: ð2Þ
Because the HLL scheme assumes a two-wave system, F*L and F*R are same as HLL flux FHLL:
FHLL ¼ SRFL � SLFR þ SRSL UR � ULð Þ
SR � SL

: ð3Þ
The HLLC intercell flux is written as [4,6]
FHLLC
iþ1=2 ¼

FL; 0 6 SL

F�L ¼ FL þ SL U�L � ULð Þ; SL 6 0 6 S�
F�R ¼ FR � SR UR � U�Rð Þ; S� 6 0 6 SR

FR; 0 P SR

8>>><
>>>:

ð4Þ
U*L and U*R are the conserved variable vectors in the star region separated by the contact. F*L and F*R are obtained by apply-
ing Rankine-Hugoniot conditions across each wave [4,6].

In the HLLC scheme, variables of states in the star region are obtained with jump conditions across each wave as described
by [4,6]:
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U�K ¼ qK
SK � unK

SK � S�

� � 1
S�
utK

EK
qK
þ S� � unKð Þ S� þ pK

qK SK�unKð Þ

h i

2
66664

3
77775; K ¼ L or R; ð5Þ
where the subscripts n and t represent the normal and tangential velocity components, and S* is the middle wave speed.
To compute wave speeds SL, SR, and S*, the pressure-velocity based wave estimations presented by Toro [4] are used to

estimate the shock and the rarefaction waves accurately. More detailed expressions are presented in [4]. Einfeldt proposed
wave speeds motivated by the Roe-averaged values ũn and ã [5]. Using the modified wave speeds, the HLL scheme is often
called the HLLE scheme [4,5,13].

2.2. Finite volume method for non-Cartesian domain

We use the finite volume approach for solving multidimensional problems. The solution is updated including all the inter-
cell fluxes in a single step. An important property of the Euler equation is the rotational invariance. For the non-Cartesian
domain, the original conserved variable vector is rotated to the direction normal to the cell interface. Then we apply the local
Riemann problem at the rotated frame. In the rotated frame, the local Riemann problem becomes a one-dimensional system
[4]. The resulting numerical flux is rotated back to obtain the required intercall flux at each side. The second-order upwind
finite volume scheme is achieved using the WAF approach.

2.3. Weighted average flux (WAF) approach

The WAF scheme is the second-order extension of the Godunov first-order upwind method. WAF is second-order accurate
in space and time [4,9–12]. In the WAF scheme, intercell flux is represented by an integral average of the physical flux across
the full structure of the solution of a local Riemann problem. Since the states between waves are constant, this integral re-
sults in the sum of the fluxes at each constant state with weight [4].

The resulting WAF is [4]
Fiþ1=2 ¼
XNþ1

k¼1

bkFðkÞiþ1=2; k ¼ 1; . . . ;4; ð6Þ
where N is the number of waves in the Riemann fan.
Weights bk are expressed in terms of the wave speed Sk as [4]
bk ¼ 1
2 ck � ck�1ð Þ

ck ¼ DtSk
Dx ; ck ¼ Courant number for wave k of speed Sk:

ð7Þ
An alternative form of the flux can be rearranged as [1]
Fiþ1=2 ¼
1
2

Fi þ Fiþ1ð Þ � 1
2

XN

k¼1

ckDFðkÞiþ1=2: ð8Þ
Because the WAF scheme is second-order accurate, spurious oscillations appear in the vicinity of a high gradient. The TVD
modification of the WAF flux with limiter function /ðkÞiþ1=2 is written as [4]
Fiþ1=2 ¼
1
2

Fi þ Fiþ1ð Þ � 1
2

XN

k¼1

signðckÞ/ðkÞiþ1=2DFðkÞiþ1=2; ð9Þ
where
/ðkÞiþ1=2 ¼ /iþ1=2 rðkÞ
� �

: ð10Þ
The flow parameter r(k) is defined by [4]
rðkÞ ¼
DqðkÞi�1=2=DqðkÞiþ1=2; ck > 0

DqðkÞiþ3=2=DqðkÞiþ1=2; ck < 0:

8<
: ð11Þ
For the flow parameter, q is selected for a single quantity q [4]. For the limiter function /ðkÞiþ1=2, the MINBEE (Minmod)

limiter is used [4]. The relation between the WAF limiter function and the conventional limiter wðkÞiþ1=2 is expressed as [4]
/ðkÞiþ1=2 ¼ 1� 1� jckjð ÞwðkÞiþ1=2: ð12Þ



S.D. Kim et al. / Journal of Computational Physics 228 (2009) 7634–7642 7637
2.4. Application of WAF to the HLL and HLLC schemes

The WAF scheme can be applied directly to the HLL and HLLC approximate Riemann solvers. In using the HLL or HLLE
scheme, the second wave jumps are neglected; hence, there is no difference across the contact and shear waves.

The numerical flux of the HLLC scheme at the intercell boundary is given as [4]
FHLLC;WAF
iþ1=2 ¼ 1

2
FL þ FRð Þ � 1

2

signðc1Þ/ð1Þ F�L � FL
� �

þsignðc2Þ/ð2Þ F�R � F�L

� �
þsignðc3Þ/ð3Þ FR � F�R

� �
2
664

3
775: ð13Þ
The HLL and HLLE schemes can be expressed in a similar manner:
FHLL=HLLE;WAF
iþ1=2 ¼ 1

2
FL þ FRð Þ � 1

2

signðc1Þ/ð1Þ F�L � FL
� �

þ0
þsignðc3Þ/ð3Þ FR � F�R

� �
2
64

3
75: ð14Þ
In the HLL and HLLE schemes, F*L and F*R have the same expressions as those of the HLLC scheme, and data U*L and U*R have
the same values as UHLL.

3. Shock instability and its cure

Quirk concluded that any Godunov scheme built upon a single Riemann solver has shortcomings and sometimes fails [1].
He suggested a combination method with a dissipative scheme. Liou suggested that the cause of such failings can be de-
scribed as a transverse numerical instability associated with the shock wave, and called it ‘‘shock instability” [2].

Liou analyzed the structure of the numerical diffusivity of several numerical flux schemes [2]. He confirmed that the root
of the shock instability is the dissipative pressure term D(p) in the mass flux. Liou presented the following lemma: ‘‘A scheme
having the property D(p) = 0 in the mass flux is a shock-stable scheme.” By Liou’s analysis, the HLLE scheme has the property
of D(p) = 0. Pandolfi and D’Ambrosio reported that ‘‘methods that explicitly deal with the contact surface display a clear evi-
dence of carbuncle phenomenon; if the interaction is very weak, or totally ignored, no carbuncle instability occurs.” [14].

To investigate the property of the pressure dissipation term of the HLLC scheme, the numerical mass flux expression is
applied to the HLLCE scheme. However, the HLLC scheme does not fit in the general mass flux form of Liou. Hence, mass flux
is only used in the continuity equation. Detailed expressions of the mass flux for the HLLC scheme is described in [8] and the
resulting dissipation term of the continuity equation is expressed as
DHLLC
ðcontinuityÞ ¼ AqL

S� � unL

SL � S�
þ BqR

S� � unR

SR � S�
; ð15Þ
where constant A and B are presented in [8]. As shown in Eq. (15), there is no pressure difference term in the whole dissi-
pation term. However, the middle wave speed S* contains a pressure difference term as follows:
1
qLðSL � unLÞ � qRðSR � unRÞ

Dp: ð16Þ
The estimated middle wave speed contains non-zero pressure difference term and is used for the conserved variable vectors
U*L and U*R in the star region (see Eq. (5)). Therefore, alternative forms of U*L and U*R without the middle wave speed can
prevent the shock instability problem. Quirk employed the HLLE scheme in the vicinity of strong shock using a localized
switching function [1]. We suggest another localized switching method. Using our proposed method, the HLLC scheme is
switched to the HLL scheme only in the transverse direction of strong shocks and the magnitude of the additional dissipation
is automatically determined. Since the HLL scheme can resolve isolated shock exactly, local application of the dissipative HLL
scheme has no adverse effect on the overall resolution of flow fields.

3.1. Modified state data and numerical fluxes in the star region

As shown in Eqs. (1)–(5), the HLLC and HLL fluxes are expressed in a single framework, and they can be determined by the
expressions of state data U*L and U*R.

Introducing a switching function f, the new data of states U*L
new and U*R

new are expressed as follows:
Unew
�L ¼ f � Uþ�Lð1� f Þ � UHLL; ð17aÞ

Unew
�R ¼ f � Uþ�Rð1� f Þ � UHLL: ð17bÞ
The function f has a value of 0.0 or 1.0.
Left and right fluxes in the star region are now defined by newly obtained data of states U*L

new and U*R
new:



7638 S.D. Kim et al. / Journal of Computational Physics 228 (2009) 7634–7642
Fnew
�L
¼ FL þ SL Unew

�L � UL
� �

; ð18aÞ
Fnew
�R
¼ FR � SR UR � Unew

�R
� �

: ð18bÞ
The resulting data of states Fnew
�L

and Fnew
�R

can be applied directly in the HLLC scheme. This method, named HLLC–HLL, can also
be applied to other approximate Riemann solvers.

3.2. Switching function f

We define a function fp in the form of the inverse of a mesh refinement monitor function [1] to identify the location of
shock waves:
fp ¼
1:0; if minðpR ;pLÞ

jpR�pL jþe P 1:0

0:0; otherwise;

(
ð19Þ
where e is chosen to be 10�16. pL and pR are pressures which act on the cell interface. The shock instability occurred due to
the transferred perturbation in the transverse direction of the shock. Therefore, all the neighboring cells must be examined
[15]. The required surfaces for the function fp in the x-and y-direction are calculated as
fpx ¼min fpiþ1=2;j; fpi;jþ1=2; fpi;j�1=2; fpiþ1;jþ1=2; fpiþ1;j�1=2
� �

; ð20aÞ
fpy ¼min fpi;jþ1=2; fpi�1=2;j; fpiþ1=2;j; fpi�1=2;jþ1; fpiþ1=2;jþ1

� �
: ð20bÞ
Except for shock waves, the pressure changes continuously and the pressure difference pR � pL across the cell interface is
not large. Therefore, the function fp has a value of 1.0 in most of the computational domain. In the vicinity of the shock waves,
the pressure difference is increased and the function fp has a value of 0.0.

Next, we examine the transverse direction and the shock strength. The resulting switching function f is only applied to the
transverse direction of the shock for the case of strong shock as follows:
if f p ¼ 0:0; f ¼
1:0; if ML > 1:0 and MR > 1:0
1:0; if ML < 1:0 and MR < 1:0
0:0; otherwise:

8><
>: ð21Þ
ML and MR are local Mach numbers at the cell interface. Wherever the function f has a value of 0.0, the HLLC scheme is
switched to the HLL scheme.

3.3. Treatment of the shear waves for the TVD condition in the WAF scheme

Tangential velocity components exist in the multidimensional problem, and they are related to shear waves. For a MUS-
CL-type scheme, the limiting process of the tangential velocity components is carried out during the reconstruction. How-
ever, the WAF scheme is the high-order extension by an integral average of the flux across the full structure of a local
Riemann problem. The limiting procedure is applied to each flux component in the Riemann fan. Quirk presented the impor-
tance of the shear wave and proposed a ‘‘shear fix” for the Roe scheme using the WAF scheme [16]. His results showed that
the proper treatment of the shear wave in the Roe scheme can give results as good as those by the exact Riemann solver for
the shock reflection problem. Toro suggested a simple approach for the treatment of the shear waves in the WAF scheme [4].
In a two-dimensional system, the y-momentum equation is treated separately by regarding it as a scalar equation.

If the switching function has a value of 0.0, the numerical flux is switched from the HLLC scheme to the HLL scheme, and
no limiting is applied to the shear wave. The y-momentum component is calculated in the same manner as Eq. (14). If the
function f has a value of 1.0, the y-momentum component is calculated as [4]
FTVD
qunut

¼ 1
2

1þ /ðutÞ
� �

utL þ
1
2

1� /ðutÞ
� �

utR

� 	
FTVD

qun
; ð22Þ
where /ðutÞ is a limiter function applied to the tangential velocity component across the v-shear wave in the rotated frame,
and FTVD

qun
is the TVD flux for the continuity equation. Eq. (22) is also used in the original HLLC scheme.

4. Numerical results

All the numerical computations were conducted using a CFL number of 0.5 except steady normal shock case. Every result
in each test problem is printed at the same time level.

4.1. Odd–even decoupling

Fig. 1 shows Quirk’s odd–even decoupling test problem [1]. The centerline of the grid is perturbed from a perfectly uni-
form grid by ±10�6, and the grid size is 801 � 21. A moving shock of Ms = 6.0 propagates down a duct. The results show the



Fig. 1. Odd–even grid perturbation problem: density contours (second-order WAF with MINBEE (Minmod) limiter).
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density contour at Xs � 300. The HLLC scheme shows the promotion of odd–even decoupling along the shock. Using the
switching function f, HLLC–HLL shows that decoupling was completely eliminated. The function f was activated only in
the transverse direction of the shock.

4.2. Steady normal shock

Fig. 2 shows the results of steady normal shock test case for Mach 20 flow. The grid size is 51 � 26 and the left (L: i 6 12)
and right (R: i P 14) conditions across the normal shock are taken from [17]. The intermediate state conditions (M: i = 13)
are taken from [17,18]. The density at the intermediate state is given as
qM ¼ eqL þ 1� eð ÞqR; ð23Þ
where the shock position parameter e = 0.0, 0.3, 0.5, 0.7 and all other variables are calculated to lie on the Hugonoit curve
[18]. The top and bottom boundary conditions are given as periodic and the outflow mass flux is fixed to preserve the initial
shock position [17]. Chauvat et al. [18] presented a stability diagram on two-dimensional steady normal shock flow for Mach
number and shock position parameter. For the Mach number of 20, Godunov, Roe or HLLC schemes showed stable solution
from the shock position parameter of 0.64 [18]. Fig. 2 shows similar results to the result of Chauvat et al. The HLLC scheme
gives stable solutions for parameter e = 0.0 and e P 0.7 and HLLC–HLL shows stable solutions for all values of e.

4.3. Carbuncle phenomenon

The carbuncle problem has been observed and discussed for many years, and is considered a typical example of shock
instability. When supersonic or hypersonic blunt body flow is simulated, spurious solutions can appear along the stagnation
line. There are nonphysical recirculation regions, and a protuberance grows ahead of the bow shock. Fig. 3 shows the numer-
ical results of supersonic circular blunt body flows. The freestream Mach number is 6.0, and the grid size is 401 � 401. In
Fig. 3, the HLLC scheme with the shear wave treatment described in Section 3.3 shows a sawtooth-like shock front, but
the typical protuberance did not grow. The spurious solution along the stagnation line is not shown in HLLC–HLL. The
switching function was activated (f = 0) for only a small portion of the shock region along the transverse direction of the
shock wave.

4.4. Kinked mach stem

When a plane shock is reflected from a ramp, a double-Mach reflection (DMR) is formed if the interaction between the
shock wave reflection and the shock-induced flow deflection process is strong. When a DMR is formed, the primary Mach
stem is sometimes kinked, similar to the carbuncle phenomenon. Fig. 4 shows the numerical results of a kinked Mach stem
test problem: a planar moving shock has a speed of Ms = 5.5, the ramp angle is 30�, and the grid size is 401 � 401. The HLLC
scheme shows the kinked primary Mach stem. Using the function f, the spurious kinked Mach stem was completely elimi-
nated. The function f caught only strong shock waves, the moving shock, the primary Mach stem, and the end of the curved
part of the reflected shock. In addition, the function f was only activated in the numerical flux of the y-direction. There was a
Fig. 2. Steady normal shock test problem: density contours (second-order WAF with MINBEE (Minmod) limiter).



Fig. 3. Supersonic circular blunt body: density and switching function distributions (second-order WAF with MINBEE (Minmod) limiter).

Fig. 4. Kinked Mach stem problem: density and switching function distributions (second-order WAF with MINBEE (Minmod) limiter).
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small incipient odd–even decoupling where the incident shock crossed the upper boundary for the HLLC scheme. This was
also eliminated by the HLLC–HLL.

4.5. Supersonic corner flow

Fig. 5 shows the results of a supersonic corner problem. A moving shock with Ms = 5.09 diffracts around a 90� corner. The
grid size is 201 � 201 + 401 � 401. The HLLC scheme showed no problem at the corner, but spurious oscillations were ob-
served at the planar moving shock. The switching function f was activated on the step corner and moving shock waves. Using
the function f, the spurious solutions along the planar moving shock were completely eliminated.



Fig. 5. Supersonic corner flow: density and switching function distributions (second-order WAF with MINBEE (Minmod) limiter).
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5. Conclusion

The approximate Riemann solvers which resolve contact and shear waves can give unphysical results in the presence of
strong shock waves. Many numerical methods which add dissipation have been reported to prevent such failures. We pro-
posed another way of adding dissipation to the HLLC scheme. Among the reliable approximate Riemann solvers, the HLL
scheme can resolve the isolated shock waves exactly with exact wave speed estimation, and it can be easily combined into
the HLLC scheme. Since so-called shock instability is due to perturbation transfer in the transverse direction of a strong
shock, the HLL scheme is applied in this direction. To identify a strong shock and the transverse direction of the shock, an
appropriate switching function was defined and presented in this paper. This has the same effect as adding dissipation to
the transfer direction of the perturbation, and the magnitude of the additional dissipation is automatically determined.
For a high-order extension using the WAF scheme, the treatment of the v-shear wave is modified in the framework of Toro’s
suggestion.

The resulting method was tested against a steady normal shock instability problem and Quirk’s test problems. Odd–even
decoupling, steady normal shock, the carbuncle phenomenon, DMR flows, and supersonic corner flows were successfully sta-
bilized with our method. The dissipative scheme was used in a small portion of the shock region along the transverse direc-
tion of the strong shock wave. Since the HLL scheme can resolve isolated shock exactly, local application of the dissipative
HLL scheme had no adverse effect on the overall resolution of flow fields.
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